两个法则,一个是高斯法则,也就是正态分布。另一个是幂律法则恩卓中盈,可以理解为二八法则。
图片恩卓中盈
我们的世界中绝大部分事物它们发生情况的分布是正态分布,即在某些情况下发生的可能性是很大的(红色很高的山峰)。如果我们把横轴看做发生的可能性,纵轴看做发生的数量。比如1000个男人的身高是在1.5米-2.3米之间,辣么1.7米-1.9米就是那个红山峰或周围一点的距离,1.5米和2.3米就是山脚下那一丢丢的个数(栗子不是很严谨,但大概就是这么个意思)。
图片
然后我们对照看幂律分布,翻译成和正态分布相对应的男性身高语言,即1.5米-1.55米的男人好多呀,再高的就要少好多了,再高的越来越少,越来越少,但是居然有身高3米的男生...(现实中是不可能存在这样的自然分布的,只是为了举个栗子)。财富分配符合这一分布,穷人总是绝大部分,越有钱的又少,但是越少的人掌握着越丰厚的财富。
图片
在正态分布的时间恩卓中盈,如果两天内市场下跌30%,应该是每天下跌15%左右。但是在幂率分布的时间,可能是一天下跌了29%,另一天下跌了1%。
一个火鸡每天被主人投食,火鸡会认为被投食是常态。但是到了感恩节的那天,火鸡没有等来投食,而是被主人一刀杀了做感恩节大餐了。事实上,主人养着火鸡,就是为了感恩节那天吃(美国人感恩节习俗必吃火鸡),但是火鸡却认为自己遭遇了黑天鹅。在塔勒布的宇宙里,有些事情的发生后果是0和1,这就是风险管理的重要性。一旦某些风险发生,即便概率再低,产生的结果是出局,那么这种风险一定要防范。
大部分人用正态分布思维做风险管理,认为发生风险是小概率事件。最典型的案例是长期资本公司的倒闭,他们认为发生这样的风险,是好几个标准差以外的事情。然而,金融市场的特点是幂率分布而不是正态分布,每隔几年,或者十年,都会出现标准差以外的事件。这意味,长期资本管理公司的风险管理模式,倒闭是必然的,只是时间问题。
图片
在传统金融学里面,我们的统计方法都是基于正态分布的,比如说夏普比率、Beta等等。很长一段时间,我们看一个基金经理或者金融产品好坏与否,都是通过夏普比率来看的。但是问题是,既然金融市场本身是极端斯坦,不是平均斯坦,那么夏普比率的意义就不大。我相信在长期资本倒闭前,其夏普比率是超高的。许多对冲基金也都出现了10个标准差外的损失。包括2020年新冠疫情出现,把全球的“风险平价”模式的对冲基金都干掉了,除了桥水以外。风险衡量的指标,要回归到本质。如果一个人真的在冒险,那么最终的结果可能就是被“清算”,除非你运气极好……
重视赔率超过概率,市场给黑天鹅事件定价过低,赔率特别好,那么就一直做,直到必然会发生的那天。相对于高概率来说,既然世界本事具有很强的不确定性,许多高概率是被“虚高”了,那么在投资上不如专注在高赔率。这一点我们也在《大空头》一书中看过。只要抓住一生一次的交易,超高赔率交易出现一次,就足够了。
火鸡也许可以预测每天早上食物的多寡,但不可能预测感恩节的到来,所有的数学分布和统计估计依然是经验框架下的产物。认知真相无比之难,经验之外不可知的那一部分总是让人寝食难安,此时应该如何应对呢?塔勒布的哲学拨云见日:反脆弱,不用做预测大师,只需要改变赔付关系即可。在黑天鹅降临之时,具备反脆弱特性的事物不但不会受损,反而还能有巨大收获。
不确定性是最大的确定性,不确定性才是常态。人们总是希望通过种种方式降低不确定性,获得确定性。在实际决策过程中,人们往往过度关注预测的正确与否,希望无限提高正确率,但是到头来却在赔付结果上吃了亏,形成决策上的巨大错配。一个预测大师可以99%的时间都正确,然后在1%的时候赔得底儿掉。预测准确率的提高如果对应赔付的大幅恶化,这样的准确并没有意义。
结论:胜率重要,但其上限不够高,赢亏比,其天发板是极高的,比概率更重要。
同时反脆弱防黑天鹅(风控,寿星的核心秘籍)恩卓中盈,下周很多朋友会意识到这句话的含金量。
给你的交易插上翅膀,申请优惠手续费,内部策略服务,加入期货裙,课程资料:长按识别或扫描: 本站仅提供存储服务,所有内容均由用户发布,如发现有害或侵权内容,请点击举报。乐股配资提示:文章来自网络,不代表本站观点。